
WebAuthn is coming to town!
bodik@cesnet.cz

With courtesy of reused talks by @herrjemand, @equalsJeffH, @Oskar456 and others from FIDO Alliance ;)



A non-formal prequel ...



A non-formal prequel ...

● Do you think that NIST recommendation should be enough for everybody ???

● If password expiration make users to use weak passwords, so the zero 
password policy requirements would result in usage of strong passwords ?

○ I don’t think so



From a field experience ...

1. Online bruteforce (1st party - login procedure not rate-limited or guarded)
2. Offline bruteforce (1st party - DB leaks)
3. Password reuse (3rd party - DB leaks)
4. Insecure delegation (2nd party - NTLM Wdigest, MSV/Cached Logons, ...)
5. Insecure storage (self - sticky notes, keepass triggers)
6. Phishing (self)



DCE should be guarded as whole and in depth
● On the contrary to the many other experts ...
● … I do think that password policy 10 + 3 + 2 is a good idea for a common 

distributed computing environment
○ … not best idea nor the only one.

○ 10 characters … average length of a czech word is 5, so it encourages users to use at least 
two words

○ 3 character classes ... to harden the bruteforce
○ 2 years expiration … nothing lasts forever



Is there a way out of this ?



Black Hat 2019: Every Security Team is a Software Team Now



Current (web) authentication recap
● Username / password

○ + works for everyone (users, developers, business)
○ - password policy
○ - sometimes enhanced by 2FA/MFA

■ - user experience (drivers, special device, recovery, …)
■ - no real standardization (beyond basic auth and few others …) 

● PKI based x509 authentication
○ - application support
○ - user experience (nor users, nor developers understands the technology well enough)
○ - key/cert provisioning vs multiple devices

● SSOs / Federations
○ User-centric (mojeid, facebook, …) / Organization-centric (eduid, …)
○ Works, but creates a single point of failure



And here comes a 
new kid to the block ...



What WebAuthn IS ?

● WebAuthn (Web Authentication) is a web standard, created by FIDO Alliance 
and published by the World Wide Web Consortium (W3C).

● The goal of the project is to standardize an interface for authenticating users 
to web-based applications and services using public-key cryptography.

○ https://w3c.github.io/webauthn/
○ https://webauthn.guide/
○ http://slides.com/herrjemand/webauthn-isig



What WebAuthn is NOT ?

● Magic flawless replacement blackbox for currently used authentication 
schemes.

● But it is changing the landscape, because now there are specs and 
implementations in common software

○ Chrome, Firefox, Edge(mium), Windows Hello
○ Java, PHP, Python, Ruby, Go, .NET



What WebAuthn DOES ?

1. It replaces the necessity to care about passwords (users are very bad at it) for taking care about a 
physical token (users are somewhat good at it).

○ Token can be special device (Yubikey, …), phone (BLE, NFC, USB) or platform authenticator 
(TPM with biometrics, …)

2. Makes services itself more resilient to a password brute-force attacks, eliminating network 
man-in-the-middle credentials stealing (public key authentication), providing phishing resistant 
authentication.



In contrast with x509 authentication ...



… looks easier and end-to-end (user to app)



An example web application
● https://github.com/bodik/flask-webauthn-example
● Components

○ flask, jinja2
○ sqlalchemy, postgresql
○ flask-login

● Quality assurance
○ pylint, flake8
○ pytest, coverage, pytest-selenium
○ travis-ci.org

https://github.com/bodik/flask-webauthn-example


FWE branch 10-basic-app
● Features

○ User login, logout
■ username/password form based authentication

○ Webauthn credential management
■ user can add, remove tokens

○ User management
■ user can add, remove users

● Quality assurance
○ Test_login

■ Emulated browser (flask test_client)
■ Selenium browser (Firefox)



FWE: Form based 
authentication



FWE: Form based 
authentication tests



FWE branch 20-webauthn



WebAuthn dictionary
● User -- a person

○ User presence -- verification that a person is nearby (touch button).
○ User verification -- verification of the user identity (PIN, biometrics).

● Client -- browser
● Authenticator -- U2F / FIDO2 token, Platform authenticator, Smartphone

○ Authenticator transport -- internal, USB, NFC, Bluetooth Low Energy
○ CTAP1 / CTAP2 -- Client to authenticator protocol

● WebAuthn
○ CBOR, COSE

■ Concise Binary Object Representation - structured data binary encoding specification.
■ COSE Object Signing and Encryption - signing and encryption for CBOR objects.

○ Attestation (data)
■ Generally an evidence of the origin. In FIDO, a newly generated credential (optionally with proof of the 

authenticator used).
○ Assertion (data)

■ Signed data (RP metadata + challenge) providing data for authentication.



Implementation WebAuthn for Web application



Implementation WebAuthn for Web application



Implementation WebAuthn for Web application

Bought by user 
can also be smart 
phone

Implemented by browser vendor

Implemented by HW 
vendor

Specified by FIDO, but 
implemented by web app 
vendor

Caveat: WebAuthn API does not specify transport between client and server, but 
only API/protocol, eg. what they should communicate and how to process the 
exchanged data

Existing user 
repository

WebAuthn Credential 
repository

Provided by frameworks or 
external libraries

Not this time.
The source of 
truth for strong 
authenticator 
attestation 



WebAuthn implementation steps
1. Update user registry to hold registered credentials

2. Add fido2 server (fido library) for webauthn functions

Update frontend and backend to perform

3. Registration flow

4. Authentication flow

5. Implement tests



How WebAuthn WORKS ? - Registration flow
1. User is logged in application
2. User starts a registration flow (clicks “Register new credential”)
3. Application frontend (browser running javascript)

a. Requests PublicKeyCredentialCreationOptions from backend by ajax call
i. Backend returns a challenge along with other parameters (app can request credential with various 

properties: resident key, user presence, attestation proof, …)
b. Browser calls authenticator with PKCCO parameter
c. Authenticator generates a new credential and returns attestation data
d. Browser passes the response to backend

4. Application backend
a. Unpacks the attestation data (credential, attestation, ...)
b. Verifies the response (if attestation was required)
c. Stores the credential for later authentication



How WebAuthn WORKS ? - Registration flow
PublicKeyCredentialCreationOptions

PublicKeyCredential



How WebAuthn WORKS ? - Authentication flow
1. User is NOT logged in application
2. User starts an authentication flow (clicks “Login” w/o username)
3. Frontend application part (browser running javascript)

a. Requests PublicKeyCredentialRequestOptions from backend by ajax
i. Backend returns a challenge along with other parameters (timeout, allowed credentials, 

transport requirements, …)
b. Browser calls authenticator with PKCRO parameter
c. Authenticator verifies the user, signs challenge and returns assertion data
d. Browser passes the response to backend

4. Backend
a. Unpacks assertion data
b. Verifies the response
c. If valid, logs the user in



Authentication flow
(frontend)



Authentication flow (frontend)

Conveying of public key options, attestation and assertion data between RP and browser is not part of the 
specs. The specs says what but not how to transport the data ...



Authentication flow (backend)



Quality Assurance
WebAuthn flows can be 
tested with software 
tokens



soft-webauthn -- python software token
● https://pypi.org/project/soft-webauthn/ 

○ https://github.com/bodik/soft-webauthn
○ Based on Yubico python-fido2 library

https://pypi.org/project/soft-webauthn/
https://github.com/bodik/soft-webauthn


FWE: WebAuthn registration tests

Webauthn registration test



FWE: WebAuthn registration tests
Webauthn registration selenium test



There’s a lot more ...
● U2F vs. Resident keys

● Password-less vs. Username-less authentication

● User presence vs. verification (touch, pin, biometrics, …)

● User best practices (lost token procedure, account recovery, …)

● Real world support in mobile devices

● Enterprise grade deployment

○ Windows Hello and beyond



Current support for WebAuthn and FIDO2
https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/

https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/


Wrap up

● There is an alternative for password authentication
○ Based on public key cryptography
○ Available in currently used software

● It is (will be) more convenient for users
○ Platform authenticators
○ Smartphones
○ External key

● If done properly
○ Less passwords to remember
○ No bruteforce on services login
○ Database leaks does compromise long term secrets
○ No credential reuse
○ Phishing resistant authentication



Let’s make 
authentication great 
again !



References
● https://w3c.github.io/webauthn/
● https://webauthn.guide/
● https://webauthn.io/
● http://slides.com/herrjemand/webauthn-isig
● https://slides.com/fidoalliance/jan-2018-fido-seminar-webauthn-tutorial
● https://hybrismart.com/2019/05/23/authentication-with-hardware-security-keys-via-webauthn-in-sap-commerce-cloud/
● https://www.imperialviolet.org/2019/08/10/ctap2features.html
● https://fidoalliance.org/securing-a-web-app-with-passwordless-web-authentication/
● https://medium.com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285#2bd3

● https://github.com/bodik/flask-webauthn-example
● https://github.com/bodik/soft-webauthn


