
Technické zajímavosti z implementace MPLS VPN s multicast VPN

Radim Roška / radim.roska@huatech.cz

CSNOG 2019

About project

- Topology follows highway network
- Interconnect RSD remote sites distributed around highways
- MPLS services mainly L3VPN and multicast
- Services:
 - Internal RSD data services (data, voice, etc)
 - Multicast traffic from cameras

Technical requirements

• Basic requirements

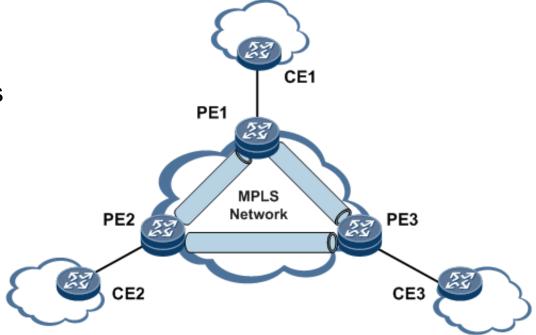
- Various L3 VPN services between all sites and core DCs (green field MPLS network)
- Cable-cuts are regular during road works © design solution to overcome this
- High reliability is needed (traffic monitoring, especially in tunnels)
- Starting with RFP requirements and evolving during discussions with customer – some interesting extra requirements:
 - Multicast inside L3VPN service
 - Way more complicated routing on some of the sites
 - L2 encryption on some links
 - Various RPs (rendezvous points) for any-source multicast & RP redundancy

Deployed platform

- Challenging requirements router could be a first choice
- Core sites chassis switch S12700 (100G between core sites)
- For <u>all</u> other sites high-end GE switch surprisingly matched all items in RFP and gave us edge over competition
- We selected very flexible switch S5720-HI
 - GE access SW (combo interfaces)
 - 4x 10G uplinks further extended by 4x 10G in extension card

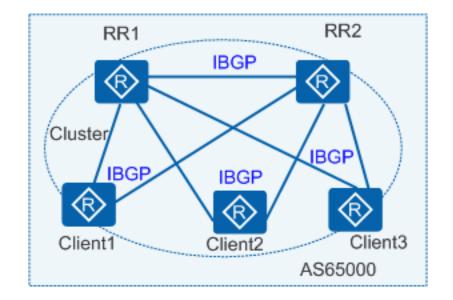
Technical introduction

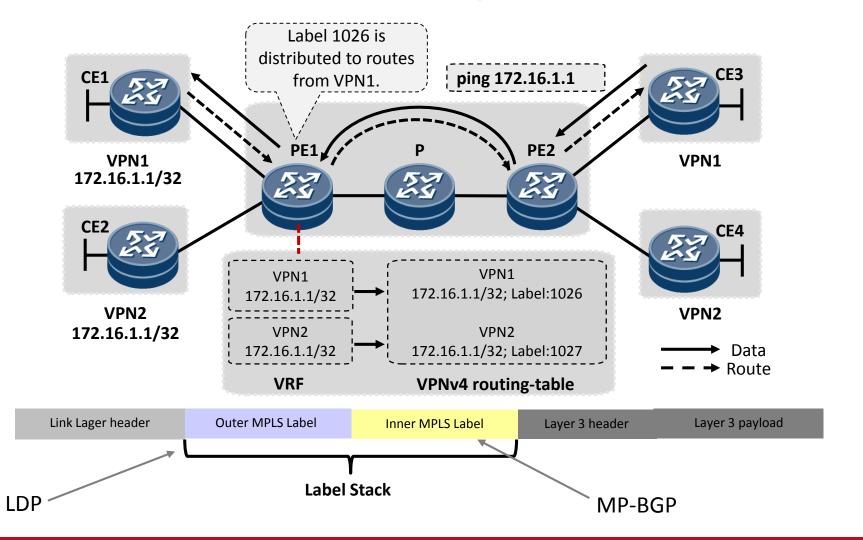
High level design in its essence


- Underlay
 - undo portswitch => backbone interfaces are routed, no need for VLANIF
 - Single area OSPF with BFD, GR, tuned timers
 - MPLS and MPLS LDP
 - MP-BGP with redundant router reflectors (RR)
 - PIM SM for multicast
- Services
 - Traditional MPLS based L3VPN
 - L2VPN (neither Martini, nor Kompella) => BGP AD VPLS
 - Multicast & Multicast VRF
 - Multi vrf OSPF to ensure dynamic routing where needed
 - VRRP for default GW redundancy

OSPF & MPLS & MPLS LDP

OSPF


- ensure reachability of all PEs and its loopbacks (router ID)
- network-type p2p
- MPLS LDP creates FEC/LSPs for mentioned loopbacks
- In this project P & PE & CE is converged
 - = MPLS LSR / BGP peer && site default GW


MP-BGP

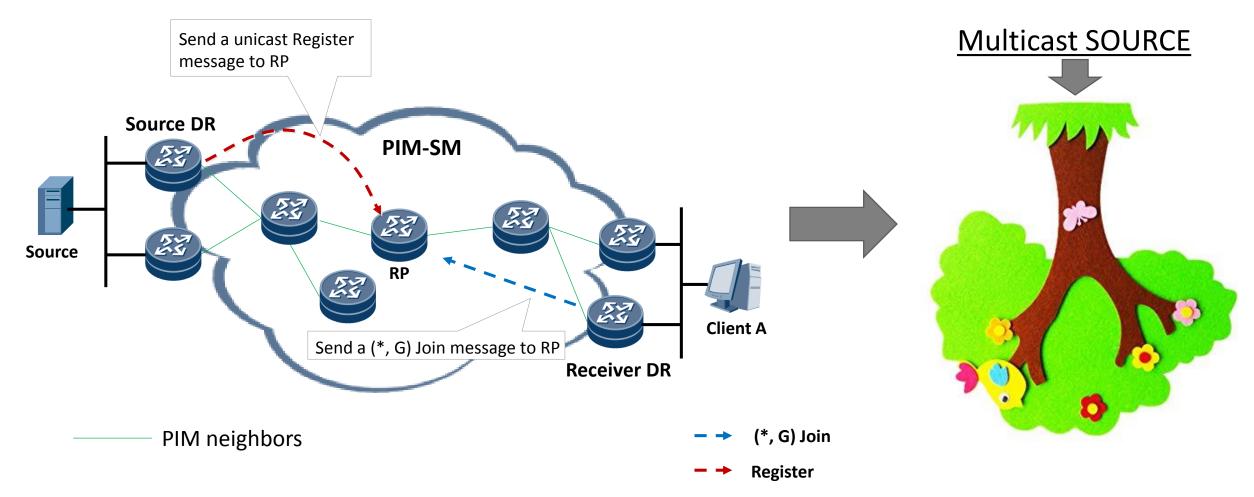
- Enable route exchange from VRF routing tables between PEs
- Exchange MPLS labels for specific services (VRFs)
- To avoid full-mash BGP sessions => use RR design (route reflector)

MPLS VPN Label Nesting

L3VPN routing table on PE

<xxx-pe01>display ip routing-table vpn-instance SERVICE Route Flags: R - relay, D - download to fib</xxx-pe01>											
Routing Tables: SERVICE Destinations : 677			Routes :	677							
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface					
0.0.0/0 x.x.x.x/24	IBGP IBGP	100 100	0 0	RD RD	x.x.1.1 x.x.6.1	XGigabitEthernet0/2/1 XGigabitEthernet0/2/1					

<u>Multicast</u>



Multicast service requirements

- Customer has big number of multicast sources all over the network (monitoring cameras)
- Potential need to allow separation of multicast to different L3VPNs
- Some cameras are placed in 3rd party network with RP placed there as well

Multicast (any source) needs RP

Multicast principles - RP

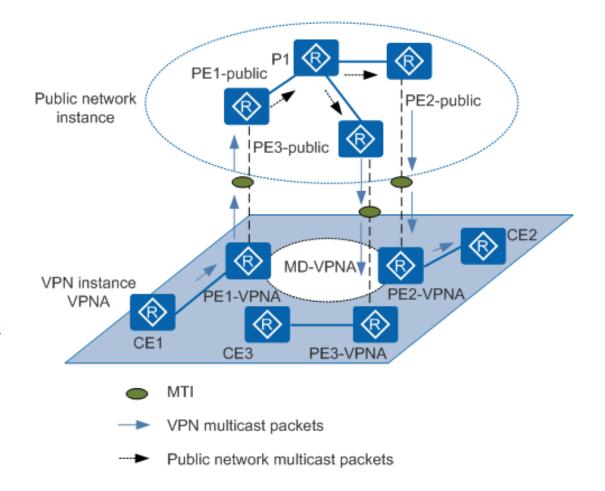
Standard any source multicast uses PIM SM with RP

- RP (rendezvous point)
 - 2 RPs dynamically set across network (primary & secondary)
 - Each RP pair handles specified multicast groups (MC IPv4 addresses)

```
Group/MaskLen: 224.x.0.0/16

RP: x.67.0.2

Priority: 5


Uptime: 10w:3d

Expires: 00:01:57
```


Multicast VPN = Multicast within Multicast

- PIM SM in public VRF distributes multicast between PEs
- L3VPN = multicast service in public multicast (multicast GRE) between related PEs
- PIM SM in VRF distributes specific MC services in
- No MPLS involved

Multicast VPN

ip vpn-instance XXXX
 description XXXX VRF
 ipv4-family

```
multicast routing-enable
multicast-domain source-interface LoopBack1
multicast-domain share-group 239.0.0.2 binding mtunnel 0 // public multicast => mcast GRE
multicast-domain switch-group-pool 239.2.37.0 255.255.240 threshold 100
//use multicast addresses from this pool for SPT switchover
```

```
<xxx-PE01>dis pim routing-table brief
VPN-Instance: public net
Total 1 (*, G) entry; 18 (S, G) entries
```

```
00001.(*, 239.0.0.2)
Upstream interface:XGE0/2/1
Number of downstream:1
```

```
00002.(x.x.1.1, 239.0.0.2)
Upstream interface:XGE0/2/1
Number of downstream:1
```

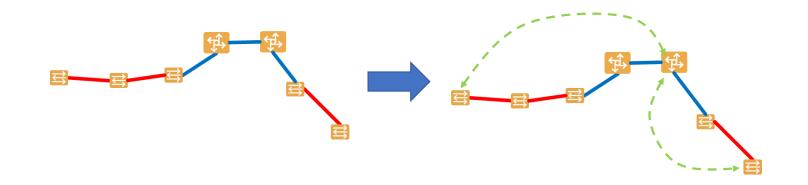
<xxx-PE01>dis pim vpn XXXX routing-table brief VPN-Instance: XXXX Total 3 (*, G) entries; 140 (S, G) entries

00001.(x.x.7.18, 224.18.0.28) Upstream interface:MTun0 Number of downstream:2

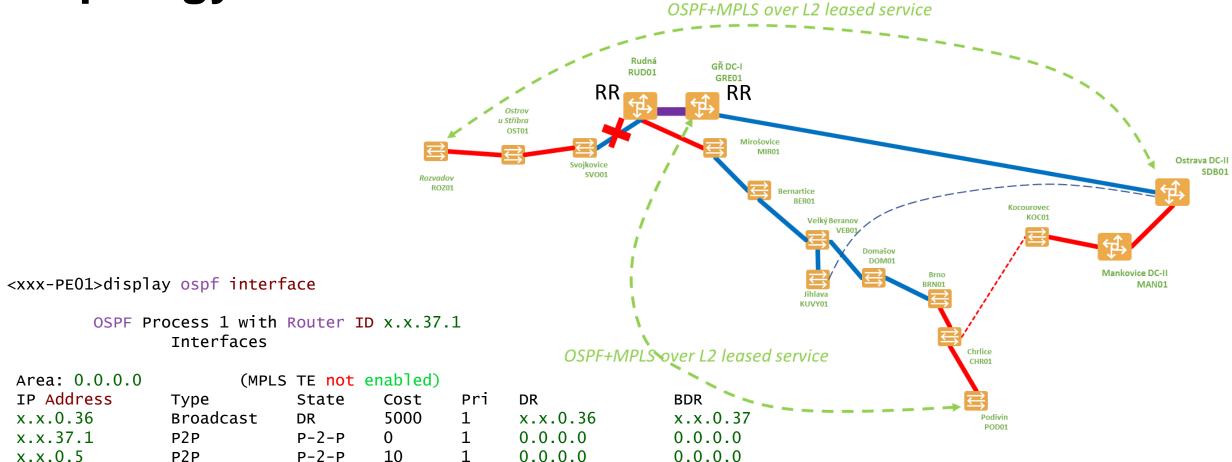
00002.(x.x.7.18, 224.18.0.29) Upstream interface:MTun0 Number of downstream:3

. . . .

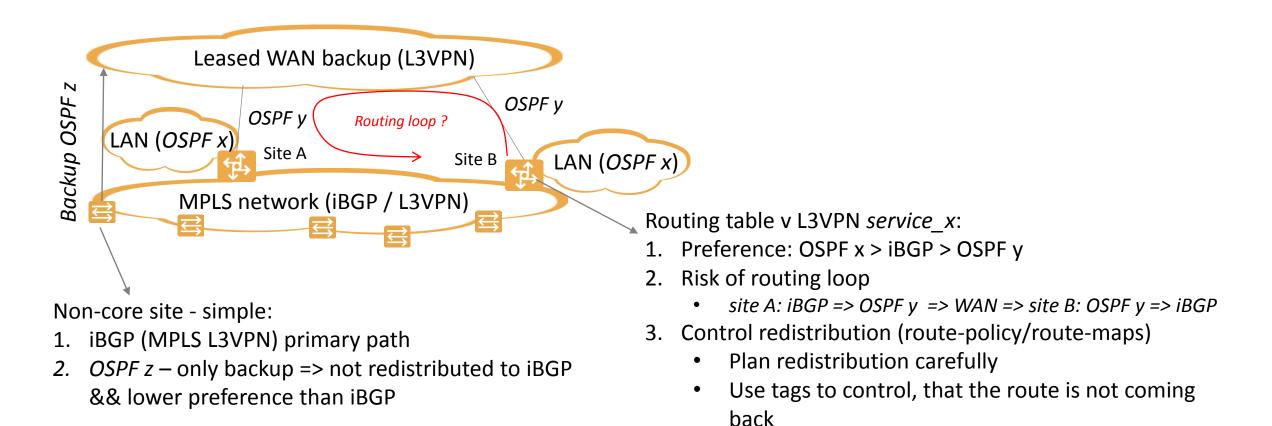
. . .



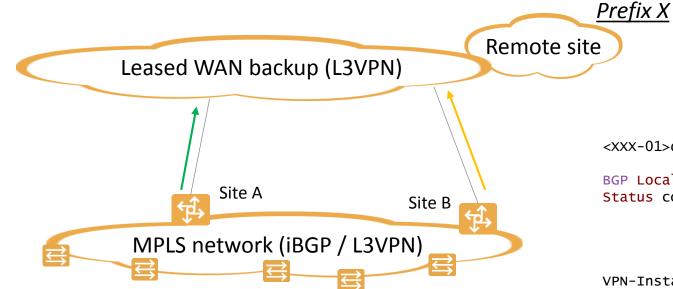
Extra requirements


How to keep service ON during fiber cut on star topology?

- Use existing leased L3VPN services for backup very complicated
- STAR => RING and extend MPLS
 - Initially MPLS over Ethernet over GRE over L3 leased backup service
 - Luckily T-Mobile agreed to reconfigure services and provide L2 p2p services connecting end-points with core sites.



How to keep service ON during fiber cut on star topology?


Route control on core sites

TIP: if in similar situation, try to use BGP instead of OSPF ;)

Route control on core sites

Prefix X is reachable through Site A and Site B.

Site A is preferred from all sites.

Easy with BGP – modify *Local Preference* BGP attribute using route map.

<XXX-01>dis bgp vpnv4 vpn-instance SERVICE_X routing-table

VPN-Instance PROV, Router ID x.x4.23.1:

Total Number of Routes: Network	667 NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>i x.x.18.16/30	x.x.1.1	1	120	0	?
* i	x.x.6.1	1	100	0	?

Conclusion

- \hfill Initial concerns from some of new requirements turned to fun
- Great vendor documentation
- Once more routing protocols meet on one router, try to reduce them to rely on single protocol metrics
- Be aware of routing loops
- Try to avoid multicast VPNs ③

Thank you, questions?

www.huatech.cz

Huatech a.s., Na Maninách 1092/20 Praha 7 – Holešovice, 170 00 ↓ +420 220 611 111
 ➢ info@huatech.cz