

Next-Gen Network Management:
Our journey to implement

CI/CD and Open Source Technologies

David Cermak, CTO Josef Miegl, NetOps Engineer

What will you hear today?

● We have managed to transform our network
infrastructure and would like to share our experience
with network automation.

● Agenda:

Why us
The bottlenecks of traditional network management
Our plans for network automation
How we achieved our goal
Demo
Lessons learned and future goals

● 10 minutes for Q&A at the end of the presentation

● Protect customers from network
threats (DDoS attacks & others)

● Demanding internet-facing
infrastructure

Private Clouds &
Computing Infrastructure

Our services

● IaaS, PaaS, HPC, Big Data, AI
● Hosted or on-premise

● Large internal network

Cloud-based network and data center
protection

Coming soonBlindspot data centers

Our network

● PoPs in 16 cities / 10 countries

● > 5 Tbit/s edge capacity

● 100 GbE backbone in Europe

● Routed (L3) network + VXLAN
overlay

Why we need change - our starting point

● Manual processes
“Hey, can you create a VLAN between A and B? I don't know what the available VLAN number is (obviously).”

● Network changes were the domain of network administrators only, although we had a larger
operations team with devops/linux administrators.

● We needed a service-oriented infrastructure (just like we already had servers and
applications).

● Configuration inconsistencies and bugs

● Limited scalability

Network Automation
The Holy Grail

Data Center Infrastructure
Management (DCIM), IPAM

Asset management
Energy & environment
Security
…

Service-oriented
infrastructure

We want to configure services -
not network devices and ports

Deploy server de.fra15.gb-rc3-11 as
OpenStack hypervisor for service-id
45887 (customer ADIB)

Advanced Monitoring

Monitoring systems to fully
understand the infrastructure as
well as services that run on top of
it

Better network flow monitoring

Our Plan

1 2 3

Beyond the network automation

The Plan for Network Automation

Change management

We need full control over all changes
in our network. Whether they are
breaking or not. Customers should be
informed when necessary.

Continuous Integration /
Continuous Delivery (CI/CD)

Based on well-tested templates, we
should be able to deploy new services
at any time.

Open source components

We need flexibility in how we
automate our network. Any innovation
should be possible. That's why we
want open source components.

Programmable, vendor-agnostic

We want to be free to choose the
vendor and the technologies and
workflows we want to use.

Full automation
(or semi-automation)

The network configuration should
match the requirements of our
services. Automatically.

Anyone can manage it

We would like to enable all of our
system engineers to modify the
operation of our infrastructure,
customize and deploy new services.

Options available

Enterprise tools - Solarwinds, Netbrain, ..

Full feature set, difficult to implement service-oriented infrastructure, complex
change management
We follow the KISS (Keep it Simple, Stupid) principle and want to use existing
well-managed open source tools where possible.

Open source solutions

Many DCIM, asset management, IPAM tools. Netbox seems to be the strongest..

Network automation basically non-existent - it's a feature in the roadmap (Nautobot)
or works instead just as a configuration backup.

Do it yourself

Creating such a solution from scratch
seemed quite complex and with many
potential dead ends.

Networking vendors

Not an option - vendor-independent
solution required

We need customizability & flexibility

Netbox

Single Source of Truth

We have unified our resources and processes under
one platform and gained clear visibility and control
over our network and infrastructure.

Data Center Infrastructure Management
(DCIM)

Sites, Locations, Racks
Network, Servers & other devices
Power management
Device configurations
Circuits & Connections
Virtualization
Tenants, Contracts, SLAs
… any many more

Detailed network configuration
- configure almost anything:

Device type templates
IP configuration
Overlays
VRFs
Modern IPAM

All in one place
with a "usable" user interface

We have consolidated a number
of data sources in one place. This
entails many customizations and
plugins.

Endless customization

Netbox: Good Aspects

1 2 3

Custom fields
Custom validations
Scripts
Tags
Plugins
API

No versioning & rollback

There is no versioning available.
After making a change, you cannot
revert to the previous state. A list
of changes is available but not
sufficient.

Non-intuitive “usable” user
interface

The interface was probably fine
when Netbox started and in the
early stages. It lags behind
commercial products.

Home work: Connect the first
cable

Rapid development

It's actually a good thing, but
upgrades can be challenging and
we need multi-level testing.

Netbox: Bad Aspects

1 2 3

Dynamic Data and Microservices

Netbox is not a good place to store dynamic data.

● IRR, RPKI, IX peers (IP, ASN, as-set, prefix count), preferred paths

● Need to be stored somewhere other than

● Many different things emerged during development -> microservices

Solution diagram

Akvorado

Logstash,
Elasticsearch,
and many more….

Monitoring

GitLab: Configuration Management

● Git - the industry standard for version control

● No versioning in Netbox
(in fact, it's one of Nautobot's features)

● So we need to be able to check in and revert
changes at least for network configuration.

● GitLab: Store configurations
○ History
○ Running configuration
○ New configuration

GitLab: Pipelines
● We created the state machine in GitLab pipelines

● Complete workflow: what to do and in what order

● Exception and error handling

● Very powerful in combination with Ansible playbooks

Integration in Netbox

Available actions via pipelines

● Approval of new configurations
● Rollback (single device or entire network)
● Diff of configurations

Rollbacks

Roll back the configuration to any
point in time - for a single device
or for the entire network.

Approve changes

Approval of changes built by the
automation engine. This is the role
of our network engineers.

Exception handling

Handling possible exceptions -
manual changes in the network,
incompatible configurations, etc...

Network Devices

1 2 3

Required Functionality

Manual changes

Network engineers must make
changes to the systems in
operation when necessary. This
needs to be enabled and tools
should address such situations.

Different Network OS version
-> different configurations

Network OS upgrades bring
different running configurations. A
configuration built using a
template does not look like the
running configuration.

Different configuration models

Different vendors have different
configuration models. This is
doubly true for software-defined
routers such as VPP or OpenStack
routers.

Network Devices

1 2 3

 Configuration Challenges

How it works

● Change in NetBox

● Run GitLab Pipeline from Netbox
○ Ansible w/ nb_inventory & nb_lookup (netbox

collection)
○ Jinja2 template -> new configuration
○ Ansible w/ eos_config & eos_command

(arista.eos collection)

● Review configuration change in GitLab
○ Approve configuration change (merge)
○ Automated deployment to the infrastructure

It’s Demo Time !!!

From manual to fully automated

Migration of existing
configurations

Difficult to create templates for
existing configurations - many
non-standard customizations

We don't want to migrate
so-called tweaks!

Still migrating legacy infrastructure

First deployment in new PoPs

No legacy configurations

Just create templates &
Configure Netbox

Easy job!

Service-oriented
infrastructure

Instead of configuring individual
ports in Netbox, we want to
configure services for customers.

So far, only a few customer
services are deployed this way

1 2 3

Lessons Learned (Part 1)

● Overcoming challenges

○ Retrieving data from NetBox can be a
pain

○ DB relationship != REST/GraphQL API
relationship

● Best practices

○ Don't allow device configuration to move
away from SSOT -> automatic
configuration checks

○ On the next deployment, the
configuration should be aligned with
SSOT.

Lessons Learned (Part 2)

● Continuous improvement

○ Better to start with something than wait
for a large and complex solution

● Recreate configuration in Netbox by hand
(if feasible with your scale)

● What is not feasible

○ Continuous integration
○ Automated testing

Out-of-Band (OOB) Management

Benefits

Implementation strategy: unified design

● Same IP address for network devices
management ports as with in-band access

● LTE (+ WiFi/Ethernet when available)
● Road-warrior WireGuard client to

two independent cloud-based VPN concentrators
● ALIX-based x86 w/ custom chassis and configuration

● No need to switch between in-band and out-of-band
● Full redundancy even for OOB
● Automated deployment & upgrades

A little of what we have already learned

Benefits of Automation

Multi-vendor /
software-defined
We can freely test and mix and match
new technologies and vendors and
implement them into our network in
almost no time.

Reduced operational costs

We are already experiencing a much
faster rollout of changes and new
services with the same team. We can
scale faster with the same costs.

Improved efficiency and
flexibility

Do we need to add anything?

Enhanced reliability

More predictable performance and
availability with assured configurations.
We can deploy changes with little risk.

Access to anyone

Every member of our team can
understand how our network works and
how it relates to our services. Systems
engineers have a full overview and
fundamental understanding of our
network services.

Services can be delivered across our
entire infrastructure without a single
touch.

That's the most important thing!

Future Outlook

● Removal of manual configurations (in Netbox) in
favour of explicit service definitions.

● Management dashboard (plugin for Netbox)

● Continuous integration

● Automated testing

● Staying ahead of industry trends

Conclusion

Our successful
implementation demonstrates
improved efficiency, reliability,
and flexibility.

Network automation using
open source technologies and
CI/CD pipelines is a
game-changer.

Continuous improvement and
adaptation are essential for
modern network management.

Visit blindspot.cloud

http://blindspot.cloud

Q&A

