٠	٠	٠	•	٠	٠	•	•	٠	•	٠	٠	٠		٠	٠	•	•	٠	٠	•	•	٠	•	•	•	•	٠	٠	•	٠	٠	٠	•	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•

In search of best locations for .CZ DNS servers CSNOG 2023

Maciej Andziński • maciej.andzinski@nic.cz • 16.05.2023

Location of .CZ DNS servers

	City	Max QPS	Min QPS	Trend	Average
	Praha	6 110	4 063	$\sim\sim\sim$	5 143
	Frankfurt am Main	2 971	2 081	-m	2 420
	Reston (VA)	2 434	1 608	mm	1 943
	Seattle (WA)	2 061	913	- v	1 778
	London	2 055	1 355	m	1 649
NEW ->	Singapore	1 648	999	mm	1 168
	Токуо	1 544	832	mm	1 167
	undisclosed	1 243	592	mh	802
	Wien	1 080	501	m	795
	Stockholm	1 231	614	-nh	766
	Milano	800	421	mh	552
	São Paulo	745	375	which	469
	Bratislava	476	44	$\sim\sim\sim\sim$	378
	Santiago de Chile	659	110	mh	340
NEW ->	Johannesburg	152	64	m	89

13 countries

5 continents

CZ_NIC CZ DOMAIN REGISTRY

https://stats.nic.cz/dashboard/en/Traffic.html

What is the best location for our DNS servers?

- RTT-based approach
 - Goal: to improve the latency between a DNS client and .CZ DNS servers

What is the best location for our DNS servers?

RTT-based approach

this is easy

this is difficult

CZ_n

- Identify sources of DNS queries
- Measure the latency between a source and our sever

Challenge

How to measure the latency between a DNS client and a DNS server?

CZ_NIC CZ DOMAIN REGISTRY

- A typical solution: active measurements
 - PING from DNS server to DNS client
 - PING to DNS server from a probe (e.g. RIPE Atlas)

Our concept: passive analysis

• Use RTT of a TCP handshake to evaluate the latency between a DNS client and a DNS server

Our concept

1) For each pair (client, server) compute median RTT of a TCP handshake

Our concept

2)Evaluate RTT for each client, network, country, ...

(Evaluated RTT = weighted mean of RTT for all servers)

CZ_NIC CZ DOMAIN REGISTRY

Evaluated RTT for 217.31.193.164 = 17.9 ms

Evaluated RTT by country

Previous RTT analyses in CZ.NIC

- Several studies since 2019
 - IT19 conference
 - https://www.youtube.com/watch?v=JDAxpqXHzY8
 - CENTR R&D workshop
 - https://centr.org/library/library/centr-event/rd14-andzinski-passive-analysis-of-dns-server-reachability-20190529.html
 - ADAM report: DNS RTT analysis reinforced
 - https://adam.pages.nic.cz/reports/adam/dns-tc-cz/
 - Master Thesis: Optimalizace provozu DNS anycastu pro .cz doménu (Lukáš Vacek)

CZ NIC CZ DOMAIN REGISTRY

- https://dspace.cvut.cz/bitstream/handle/10467/87982/F8-DP-2020-Vacek-Lukas-thesis.pdf

Recent analysis

- A tool for selecting best location
 - Automatic
 - Easy to re-run
 - Producing easy-to-interpret results

CZ NIC CZ DOMAIN REGISTRY

1) Combine data:

- RTT for ASNs
- peeringDB data

2) Select best IX nodes suitable for installing new .CZ servers

• We introduce a measure called "RTT impact score" (RIS)

 $RIS_{source} = QPS_{source} \cdot (RTT_{source} - RTT_{cz})$

- *RIS>0* if a source makes the overall .CZ RTT worse
- *RIS<0* if a source makes the overall .CZ RTT better

CZ NIC CZ DOMAIN REGISTRY

- "Voting" method
 - 1) Select ASNs with *RIS>0*
 - 2) Sum *RIS* ("votes") for each IX node where selected ASNs peer
 - 3) Select IX nodes with highest number of votes
 - 1) Filter out IX nodes in countries with *RIS<0*
 - 2) Filter out IX nodes where AS25192 CZ.NIC, z.s.p.o already peers

Results

Suggested locations

List of suggested IXs for new .CZ servers location.

Show 25 v entries

Show 25 ❤ entries				Search:	
IX country	IX continent 崇	IX region	IX description	RTT impact score 崇	Covered ASNs in IX $ ightarrow$
United States	Americas	North America	NYIIX New York	344313	95
United States	Americas	North America	DE-CIX New York: DE-CIX New York Peering LAN	336472	100
💶 India	Asia	South Asia	Extreme IX Mumbai: Extreme IX	309793	93
United States	Americas	North America	Equinix Ashburn	307878	143
United States	Americas	North America	Equinix Miami	302395	74
📌 Hong Kong SAR China	Asia	East Asia & Pacific	Equinix Hong Kong	298989	98
United States	Americas	North America	Equinix Chicago	297682	112
Canada	Americas	North America	TorlX	293517	85
• Japan	Asia	East Asia & Pacific	BBIX Tokyo	291554	132
💶 India	Asia	South Asia	DE-CIX Mumbai: DE-CIX Mumbai Peering LAN	289241	129
United States	Americas	North America	Any2West	276930	137
	Oceania	East Asia & Pacific	IX Australia (Sydney NSW): NSW-IX	274461	57
• Japan	Asia	East Asia & Pacific	JPIX TOKYO	271090	109
• Japan	Asia	East Asia & Pacific	JPNAP Tokyo: Peering	268956	102
🎨 Australia	Oceania	East Asia & Pacific	Equinix Sydney	266017	81

CZ NIC CZ DOMAIN REGISTRY

Sankey Diagram

CZ-NIC CZ DOMAIN REGISTRY

Conclusion

- RTT is just one of the aspects (but very important)
- "RTT impact score" method
 - Helps to identify sources with negative impact on overall RTT

- Not only RTT but also QPS matters
- Can be powerful when combined with peeringDB data

•	٠	٠	•	٠	•	•	•	٠	٠	٠	٠	•	•	٠	٠	•	•	٠	٠	•	•	•	•	•	•	•	٠	٠	•	٠	٠	٠	•	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•

Thank You

Maciej Andziński • maciej.andzinski@nic.cz

