BGPsec

In the context of routing system security

In a form of questions and answers

The context

* A brief introduction to BGPsec
* Many of the topics discussed here exist in reality, some don’t — yet.
* BGP security is a moving target by itself.

* Abstracted away from vendor specifics.

e Community interest in BGPsec is slowly growing.

* There is very little operational experience with BGPsec at this time.

BGP security

BGP was designed with security in mind from the very beginning.

Routing protocols and routing information

* Routing protocols provide transport for routing information.
* Protocol part is easy.
* Information part is nowhere near easy.

* Practical routing information is not autonomous.
* Complexity lies in information authentication and authorization.

Why BGPsec ?

e Unintentional and malicious events
* Route leaks and route hijacks
e Trust vs verification

* Origin validation helps with unintentional leaks.
* Origin validation does not help with most of hijacks.
* Origin validation does not care about the actual path.

* Path validation vs path plausibility

BGP routing security planes

* Protocol — BGP protocol mechanics.
* Infrastructure — caches, validators, authorities.
* Information — hierarchical trust chains.

RPKI 7

* Resource, not Routing, PKI.

* A verifiable hierarchy of information objects — resources.

* AS numbers, prefixes, router keys, peer sets, other objects.

* A hierarchical database.

* Not directly usable by routers.

 Origin validation and path validation schemes act as clients to RPKI.
* One database for multiple applications.

Using RPKI

e A distributed system with high authority-to-router fanout ratio.
* Information verification should not be redone on each router.

* A hierarchy of verifiers and caches.

* Routers act as clients of verifiers and caches.

* One RTR protocol for multiple RPKI applications.

BGPsec protocol fundamentals

e Cryptographic validation of traversed AS path

* For external BGP only

* Transit nodes sign both the current AS path and forward AS hop too.
* Each individual prefix is sighed separately.

* Regular DSA scheme — key management aspects.

* Signing, not encryption.

BGPsec protocol mechanics

* New BGP path attribute — BGPsec PATH

e Exclusive with AS_PATH — cannot have both unsigned and signed paths
together in the same update.

* Does not deprecate AS_PATH, can coexist — partial coverage.
e Applicable to advertisements and to external peerings.

e Capability scheme — bidirectional and asymmetric.

* AS4, Extended messages, MP container.

* Minimalistic crypto payload on the wire — requires PKI infra.
* Key management - beaconing.

* Proper operation relies on RTR signalling.

BGPsec advertise operation

* Signs <AS path, prefix, target ASN> entities.

* Private key local to the router is used for signing.
* Each prefix is signed individually.

* New signature is appended to existing ones.

* Currently specified algorithms result in numerically different signature
each time.

 Signature carries router’s public key identifier.

BGPsec recelve operation

* Verifies <all AS path hops, prefix> entities.
* Each AS hop is verified individually.
* Path is valid if every hop signature is valid.

* Public keys required for verification are received from RPKI
infrastructure via RTR.

* Verification outcome is binary — valid or not valid.
* Verification result is fed back into routing policy.

BGPsec network design aspects

* It operates across AS boundary.

* Has practical meaning end to end.

* Can be deployed partially and incrementally.

* Fixes IXP AS hop hiding problem.

e Can leak internal topology information.

* Allocation of router keys.

* Topology churn and update propagation radius.
* Cost of cryptographic operations.

Customer views - IXP

* BGPsec mandates end to end operation.
* Which is unrealistic to expect on a global scale.

* IXP might be a good starting point.
* |XPs keep traffic — and routing — local. Basically, IXPs are islands of routing
* Perfect for incremental deployment of BGPsec

* IXPs routing is hidden to BGP public route collectors
 Itis hard to detect hijacks and react, unless local mechanisms are applied

* AS paths in IXPs are very short
* Cryptographic operations would be minimal = no hardware update/change required?

* security gains may outweigh costs in IXP case

Vendor views

* BGPsec at this time is materialized (mostly) in opensource
 Commercial vendor implementations are behind

* Both are needed for practical deployments

* Implementations are driven by user base requirements.

Plans and timelines

* Let’s be realistic — global end to end BGPsec deployment is not too
likely.

* Limited domain deployments are very likely.

* A few years to get implementations streamlined and gather initial
operational experience.

* Second half of this decade for deployments of BGPsec becoming a
best common practice.

BGPsec perception

* Does it exist at all?

 Won’t work.

* Too slow.

* Need to replace all the hardware.
* Isn’t origin validation enough?

* Not scalable.

* Leaks private information.

* Does not address the real problem.
* BGP is secure anyway.

* Key management is complex.

Experiments

* Take realistic absolute and relative state distribution numbers.

* The overall setup models a route server in a moderately sized IX.

* Instrumented implementation for performance measurement.

* No codepoint hijacks.

* Feeder side is precomputed ahead of time.

 Verification is performed prior to path selection.

* The results should not be generalized and interpreted outside of the experiment context.

* Number of prefixes and paths.

* Number of prefixes sharing the same path.
* Fanout ratio.

e Caching aspects.

Experiments

e BGP — 83 s.
* BGPsec — 2049 s.

Contemporary compute platforms

* Plenty of raw compute performance capacity

* Memory bandwidth and latency are limiting factors
* Vectorization

e Batching and caching

* Most important — contemporary platforms do not forgive lousy
approaches to software engineering. Protocol engineering needs to
take software and hardware specifics into account seriously.

void memcpy (char *a, char *b, size_t n) { l If you do this to your platform, do not expect

while (n--) . .]
*at+ = *bit: that it will treat you friendly

}

BGPsec receive side processing

rx -> hash -> verify -> process prefix and path

SHA2 for hashing

 Computationally inexpensive — but touches
memory

» Operates on fixed size blocks with 4 byte base
element granularity

* Vectorizes well, constrained by data layout

P-256 for verification

e Computationally significantly expensive — but
does not touch memory

* Vectorizes well, little data dependency
e Batching — ECDSA*

100 (6 + 94)

100

100

5+
1

Path+SKI+SigN | ..

Path + SKI + Sig 2

Path + SKI + Sig 1

Prefix

Vectorized SHA2 and P-256

100 (6 + 94) 100 100 5+
1 I 1 I 1 I
Path + SKI + Sig N Path + SKI +ESig 2 Path + §KI +Sig1 Prefix

Keys

Linear code block operating on different data
sets in parallel

Hash multiple blocks in parallel
Sign/verify multiple hashes/signatures in
parallel

Vector lanes of fixed width

Gather operations place significant restrictions
on data format

+20% latency results in +1500% throughput

Only if data structures allow!

Wire format impact

PN | .. | P2

Sig N

Sig 2

Sig 1

th+sm£smN

Pah+sm£sgz

: Path+SKI +Sig 1

Prefix

BGPsec wire format is incompatible with computation format.

Memory access is expensive

SHAZ2 latency is linearly
proportional to block length

SHA?2 operation width is 4 bytes

ECDSA signing is computationally
expensive but constant, no memory
access

ECDSA verification is even more
computationally expensive but
constant, no memory access

BGPsec transmit side processing

{Prefix, Path and signature elements, Target} -> hash -> sign -> tx

SHA2, same as for the receive side.

» Additional blocks need to be added, different layout for hashing and for
wire encoding

* Target ASN position prevents caching

P-256 for signing
 Computationally expensive — but does not touch memory
* Vectorizes well

4 100 (6 + 94) 100 100 5+

T | Path+SKI«SigN | .. | Path+SKI+Sig2 |: Path+S$Ki+Sigl: Prefix

Experiments

* BGP — 83 s.
* BGPsec — 2049 s.
* BGPsec with proposed changes — 272 s.

s BGPsec broken?

No.

As specified now, it is suboptimal and not alighed to contemporary
hardware platform usage patterns.

What can be done then?

* BGPsec has some extensibility mechanisms inbuilt
* Protocol is versioned

* Algorithm identifiers could have different meaning in different
versions

* Hashed block layout needs to be rearranged
* Wire format needs to be rearranged
* Alternative hashing and sighature schemes need to be explored

Questions

* Can a smart compiler help here?

e Can a fashionable programming language help here?
* Vectorization availability?

* Memory system evolution trends?

Talking points

Transport security — MD5, TCP-AO
Cryptography acceleration

HW platform scalability — IA, AVX2,
AVX-512 profiles

Dedicated verification and signing
node

Interaction of verification results with
policy
RX side: parse, linearize, hash, verify

TX side — build, hash, get randomness,

sign, serialize

BGP transport security vs BGP
information security

BGP over alternative transports

Origin validation (ROA) vs path
validation (ASPA, BGPsec)

* Assigning keys to routers
* Signing vs verification cost analysis
e SHA-2: scalar, scalar pipelined,

vector, accelerated — latency vs
throughput.

* Nonrepudiation of advertisements
* Replay of advertisements

* Fanout vs caching

* Asymmetric operation

* Decisions of what to sign and what

not to sign

 Calculations of computational

intensity based on real scale and
distribution data

* Memory types and usage

BGPsec again?

* Does it exist at all?

 Won’t work.

* Too slow.

* Need to replace all the hardware.
* Isn’t origin validation enough?

* Not scalable.

* Leaks private information.

* Does not address the real problem.
* BGP is secure anyway.

* Key management is complex.

Discussion

