
DDoS Beasts

and How to Fight Them
Artyom Gavrichenkov <ag@qrator.net>



Timeline of ancient history

•First attacks: 1999-2000
•2005: STRIDE model by Microsoft
• Spoofing Identity
• Tampering with Data
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privileges



[D?]DoS

The difference between “a distributed attack” and an,

err, not distributed one is vague.

Traditional meaning: a distributed attack comes from multiple sources.

• What is a source? Is it an IP address or a machine?

• If it is a machine, does a virtual instance count?

Or a few instances under the same physical hypervisor?

What if they often migrate between physical machines?

If I’m a victim, how do I tell a single-sourced from a multiple-sourced?

• If it is an IP, then how do we treat spoofed traffic?



[D?]DoS

Hence, a different sort of thinking applies:

• DoS (as implied in STRIDE): a vulnerability in a software

(e.g. NULL pointer dereference, like Ping of Death)

• DDoS: computational resource exhaustion



Risk management

The basic idea behind STRIDE and other approaches is
risk assessment, modelling and management.



Probability/Impact Matrix

Trivial Minor Moderate Significant Severe

Rare

Unlikely

Moderate

Likely

Very Likely



Probability/Impact Matrix

Trivial Minor Moderate Significant Severe

Rare

Unlikely

Moderate

Likely

Very 
Likely

DDoS attack,
2018

• Impact:

Severe
• Probability:

?



Motivation of an attacker
• Fun!
• Blackmail
• Self-promotion
• Political statement
• Revenge
• Market competition
• Diverting attention

(e.g. in case of theft)
• Preventing access to a

compromising information



Motivation of an attacker
• Fun!
• Blackmail
• Self-promotion
• Political statement
• Revenge
• Market competition
• Diverting attention

(e.g. in case of theft)
• Preventing access to a

compromising information

Rather hard to evaluate and control

More or less predictable!





Network resource exhaustion

• A computer network, as of today*, consists of layers
• A network resource is not available to its users

when at least one network layer fails to provide service

• Hence, a DDoS attack can be attributed to a network layer

which it affects



DDoS Classification

L2-3:

L4-6:

L7:

generic bandwidth exhaustion

According to the ISO/OSI model:

exploitation of TCP/TLS edge cases

application-specific bottlenecks



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification…



Typical amplification attack

• Most servers on the 
Internet send more 
data to a client than 
they receive
• UDP-based servers 

generally do not
verify the source
IP address
• This allows for 

amplification DDoS

Attacker Victim

Src: victim (spoofed)
Dst: amplifier

“ANY? com.”

1 Gbps

Src: amplifier
Dst: victim

”com. NS i.gtld-...”

29 Gbps



• NTP
• DNS
• SNMP
• SSDP
• ICMP
• NetBIOS

• RIPv1
• PORTMAP
• CHARGEN
• QOTD
• Quake
• …

Vulnerable protocols

• A long list actually
• Mostly obsolete 

protocols
(RIPv1 anyone?)
• Modern protocols

as well: gaming



• As it’s mostly 
obsolete servers,
they eventually
get updated
• or replaced
• or just trashed

• Thus,
the amount of 
amplifiers shows 
steady downtrend

Vulnerable servers

Source: Qrator.Radar network scanner



• Downtrend in terms 

of the amount

– and a downtrend

in terms of available 

power

• However, once in a 

while, a new 

vulnerable protocol

is discovered

Amp power

Source: Qrator.Radar network scanner



• Most amplification 
attacks are easy to 
track, as the source 
UDP port is fixed

Mitigation

• NTP
• DNS
• SNMP
• SSDP
• ICMP
• NetBIOS

• RIPv1
• PORTMAP
• CHARGEN
• QOTD
• Quake
• …



BGP Flow Spec
solves 
problems?



• Most amplification 
attacks are easy to 
track, as the source 
UDP port is fixed
• Two major issues:
• ICMP
• Amplification 

without
a fixed port
(Bittorrent?)

Mitigation

• NTP
• DNS
• SNMP
• SSDP
• ICMP
• NetBIOS

• RIPv1
• PORTMAP
• CHARGEN
• QOTD
• Quake
• …



memcached

•A fast in-memory cache

•Heavily used in Web development



memcached

•A fast in-memory cache

•Heavily used in Web development

•Listens on all interfaces, port 11211, by default



memcached

•Basic ASCII protocol doesn’t do authentication
•2014, Blackhat USA:

“An attacker can inject arbitrary data into memory”



memcached

•Basic ASCII protocol doesn’t do authentication
•2014, Blackhat USA:

“An attacker can inject arbitrary data into memory”

•2017, Power of Community:

“An attacker can send data from memory
to a third party via spoofing victim’s IP address”



import memcache
m = memcache.Client([

‘reflector.example.com:11211’
])
m.set(’a’, value)

– to inject a value of an
arbitrary size under key “a”



print ’\0\x01\0\0\0\x01\0\0gets a\r\n’

– to retrieve a value



print ’\0\x01\0\0\0\x01\0\0gets a a a a a\r\n’

– to retrieve a value 5 times



print ’\0\x01\0\0\0\x01\0\0gets a a a a a\r\n’

– to retrieve a value 5 times.

Or 10 times.

Or a hundred.



Default memcached conf. in Red Hat

•memcached listens on all network interfaces
• both TCP and UDP transports are enabled
• no authentication is required to access Memcached

• the service has to be manually enabled or started
• the default firewall configuration

does not allow remote access to Memcached

•Also Zimbra, etc.



Amplification factor

0

200

400

600 NTP
CharGEN
QotD
RIPv1
Quake
LDAP

Source: https://www.us-cert.gov/ncas/alerts/TA14-017A

• Typical amplification factor used to be hundreds
• For memcached, it’s millions, and no fixed source port
• Amplification isn’t something to underestimate

https://www.us-cert.gov/ncas/alerts/TA14-017A


ipv4 access-list exploitable-ports
permit udp any eq 11211 any

!
ipv6 access-list exploitable-ports-v6
permit udp any eq 11211 any

!
class-map match-any exploitable-ports
match access-group ipv4 exploitable-ports
end-class-map

!
policy-map ntt-external-in
class exploitable-ports
police rate percent 1
conform-action transmit
exceed-action drop

!
set precedence 0
set mpls experimental topmost 0

!

Source: http://mailman.nlnog.net/pipermail/nlnog/2018-March/002697.html



...
class class-default
set mpls experimental imposition 0
set precedence 0

!
end-policy-map

!
interface Bundle-Ether19
description Customer: the best customer
service-policy input ntt-external-in
ipv4 address xxx/x
ipv6 address yyy/y
...

!
interface Bundle-Ether20
service-policy input ntt-external-in
...

... etc ...

Source: http://mailman.nlnog.net/pipermail/nlnog/2018-March/002697.html



Proof of Source Address Ownership

E.g., QUIC:

• Initial handshake packet padded to 1280 bytes

•Source address validation



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification…



IoT attacks!

•2014: LizardStresser
•2015: SOHO routers

become a persistent target
for malware
•2016: Mirai
•2017: Persirai, Hajime, …



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks



L2-3 mitigation
From a victim’s perspective:

• Anycast network with enough inspection power

• Inventory management to drop unsolicited traffic vectors

(e.g. UDP towards an HTTP server)

• Rate-limiting less important traffic

• Challenges and handshakes (more on that later)



L2-3 mitigation
From a victim’s perspective:

• Anycast network with enough inspection power

• Inventory management to drop unsolicited traffic vectors

(e.g. UDP towards an HTTP server)

• Rate-limiting less important traffic

• Challenges and handshakes (more on that later)

From an ISP’s view:

• Simple heuristics against typical attacks

• RTBH (and let the customer take care of it themselves)



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks

• L4-6
• SYN flood, TCP connection flood,

Sockstress, and so on
• TLS attacks



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks

• L4-6
• SYN flood, TCP connection flood,

Sockstress, and so on
• TLS attacks

An attack can affect 
multiple layers at once



21:30:01.226868 IP 94.251.116.51 > 178.248.233.141:
GREv0, length 544:
IP 184.224.242.144.65323 > 167.42.221.164.80:
UDP, length 512

21:30:01.226873 IP 46.227.212.111 > 178.248.233.141:
GREv0, length 544:
IP 90.185.119.106.50021 > 179.57.238.88.80:
UDP, length 512

21:30:01.226881 IP 46.39.29.150 > 178.248.233.141:
GREv0, length 544:
IP 31.173.79.118.42580 > 115.108.7.79.80:
UDP, length 512



L4+ mitigation
• SYN flood: 3-way handshake-based SYN cookies & SYN proxy, 

allowing a victim to verify the source IP address

• Other packet-based flood: other handshakes and challenges

to do the same

• The rest: session analysis, heuristics and blacklists

• It is dangerous to use blacklists or whitelists
without source IP address verification!



IPv6 issues
• 128-bit IP addresses
• Possible: to address each atom on the Earth surface
• Impossible: to store a large number of entries in memory

• About 10 years ago, blacklisting whole IPv4 networks
was already considered a bad practice
• With IPv6, this method has no other way than to return



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks

• L4-6
• SYN flood, TCP connection flood,

Sockstress, and so on
• TLS attacks



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks

• L4-6
• SYN flood, TCP connection flood,

Sockstress, and so on
• TLS attacks

• L7
• Application-specific flood



GET /whatever
User-Agent: WordPress/3.9.2;
http://example.com/;
verifying pingback
from 192.0.2.150

• 150 000 – 170 000
vulnerable servers
at once
• SSL/TLS-enabled

Wordpress Pingback

Data from Qrator monitoring engine



Another example of a L7 attack: FBS

• A bot can actually be more clever than a Wordpress machine
• Advanced botnets are capable of using a headless browser

(IE/Edge or Chrome)
=> “full browser stack” (FBS) botnets
• A FBS-enabled bot is able to go through even complex 

challenges, like Javascript code execution



Another example of a L7 attack: FBS

CAPTCHA is a weapon of last resort against FBS.

Pros:

• Easy to implement

• Generally, might work

Cons (1/2):

• Sometimes harder for humans than for robots

• Not all bots are malicious, and not all humans are innocent

• CAPTCHA proxies and farms, like http://antigate.com/

http://antigate.com/


Another example of a L7 attack: FBS

CAPTCHA is a weapon of last resort against FBS.
Pros:
• Easy to implement
• Generally, might work

Cons (2/2):
• OCR tools evolve fast
• Voice recognition evolves even faster
• “Security by obscurity”: an open-sourced CAPTCHA is relatively easy to 

break using open source machine learning tools. Example:
https://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-
minutes-with-machine-learning-dbebb035a710

https://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-dbebb035a710


Another example of a L7 attack: FBS

Under most conditions though, unlike Wordpress pingback,
such attacks won’t cause a link degradation,
hence generally out of scope of a network operator’s responsibility



Another example of a L7 attack: DNS

• DNS is built on top of UDP*,
and a DNS request fits in a packet
• The structure of a DNS query is simple



10:00:34.510826 IP
(proto UDP (17), length 56)
192.168.1.5.63097 > 8.8.8.8.53:

9508+
A? facebook.com.
(30)

10:00:34.588632 IP
(proto UDP (17), length 72)
8.8.8.8.53 > 192.168.1.5.63097:

9508 1/0/0
facebook.com. A 31.13.72.36
(45)

DNS lookup



DNS lookup

• DNS is built on top of UDP*, and a DNS request fits in a packet
• The structure of a DNS query is simple
• An attacker capable of generating spoofed queries

will make a userspace DNS application process
all those fake requests,
rendering a DNS server unavailable L7-wise.



DNS lookup

• An attacker capable of generating spoofed queries

will make an userspace DNS application process

all those fake requests,

rendering a DNS server unavailable, this time L7-wise.

• “Water torture”
• This is what happened

in October 2016 with Dyn.



DNS lookup

• An attacker capable of generating spoofed queries

will make an userspace DNS application process

all those fake requests,

rendering a DNS server unavailable, this time L7-wise.

• Luckily, DNS protocol allows switching to TCP,

and in TCP, we have a handshake to verify the source IP address,

hence, blacklists apply.

• Once again, though, enough bandwidth and inspection power

is required



DNS lookup

• Luckily, DNS protocol allows switching to TCP,
and in TCP, we have a handshake to verify the source IP address,
hence, blacklists apply.
• Unfortunately, other UDP-based protocols (e.g. gaming)

are mostly built without DDoS mitigation in mind



Attack examples
• L2-3
• Volumetric attacks: UDP flood,

SYN flood, amplification,
and so on (we don’t need to care exactly)
• Infrastructure attacks

• L4-6
• SYN flood, TCP connection flood,

Sockstress, and so on
• TLS attacks

• L7
• Application-based flood

A classification which is:
• Mutually exclusive *
• Collectively exhaustive



However

The Internet is a complex thing.



A decades old job interview quiz

• “What happens when you type www.google.com in your browser?”

• https://github.com/alex/what-happens-when:

https://github.com/alex/what-happens-when


“What happens when…”?

• DNS lookup

• Opening of a socket

• TLS handshake

• HTTP protocol

• HTTP Server Request Handle



“What happens when…”?

• DNS lookup
• IPv4/IPv6 selection
• Opening of a socket
• Deep packet inspection
• TLS handshake
• CRL/OCSP
• HTTP protocol
• Load balancer
• HTTP Server Request Handle
• CDN



“What happens when…”?

• DNS lookup
• IPv4/IPv6 selection
• Opening of a socket
• Deep packet inspection
• TLS handshake
• CRL/OCSP
• HTTP protocol
• Load balancer
• HTTP Server Request Handle
• CDN

• As the Dyn incident shows:
an application server could 
not only be a direct target of 
a DDoS attack
• Each step could suffer from 

an attack, L2-L7-wise

• Inventory management
• Infrastructure monitoring



Architectural view

• Security is not a product, not an appliance, it’s a process
• Ability of a DDoS mitigation must be built

into the design of any protocol
• A concerned company must follow policies:
• Updates
• Risk management
• Incident handling



Risk management for a network operator

• A network operator will basically suffer only

from bandwidth-consuming attacks

• However, an attacker will most likely use just the tool

they have at their disposal:

amplifier or a botnet, doesn’t matter

• Thus, the probability of an attack towards the network

is the aggregate probability of an attack for each customer

in the network



What’s next?

•memcached:
• Disclosure in November 2017
• In the wild: February 2018

•Three months are an overly short interval
•Next time, it might be even shorter
•Meltdown/Spectre show: the “embargo” approach 

doesn’t work well for a community large enough



What’s next?

•Collaboration
•Proper and timely reaction
•RFC 2350: CERT/CSIRT for network operators?
• No matter the name



Q&A

mailto: Artyom Gavrichenkov <ag@qrator.net>


